Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.710
Filtrar
1.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38558998

RESUMO

While considerable progress has been made in understanding the neuronal circuits that underlie the patterning of locomotor behaviours such as walking, less is known about the circuits that amplify motoneuron output to enable adaptable increases in muscle force across different locomotor intensities. Here, we demonstrate that an excitatory propriospinal neuron population (V3 neurons, Sim1 + ) forms a large part of the total excitatory interneuron input to motoneurons (∼20%) across all hindlimb muscles. Additionally, V3 neurons make extensive connections among themselves and with other excitatory premotor neurons (such as V2a neurons). These circuits allow local activation of V3 neurons at just one segment (via optogenetics) to rapidly depolarize and amplify locomotor-related motoneuron output at all lumbar segments in both the in vitro spinal cord and the awake adult mouse. Interestingly, despite similar innervation from V3 neurons to flexor and extensor motoneuron pools, functionally, V3 neurons exhibit a pronounced bias towards activating extensor muscles. Furthermore, the V3 neurons appear essential to extensor activity during locomotion because genetically silencing them leads to slower and weaker mice with a poor ability to increase force with locomotor intensity, without much change in the timing of locomotion. Overall, V3 neurons increase the excitability of motoneurons and premotor neurons, thereby serving as global command neurons that amplify the locomotion intensity.

2.
Alzheimers Dement (Amst) ; 16(2): e12566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595913

RESUMO

INTRODUCTION: The presence of multiple cardiometabolic diseases (CMDs) has been linked to increased dementia risk, but the combined influence of CMDs on cognition and brain structure across the life course is unclear. METHODS: In the UK Biobank, 46,562 dementia-free participants completed a cognitive test battery at baseline and a follow-up visit 9 years later, at which point 39,306 also underwent brain magnetic resonance imaging. CMDs (diabetes, heart disease, and stroke) were ascertained from medical records. Data were analyzed using age-stratified (middle age [< 60] versus older [≥ 60]) mixed-effects models and linear regression. RESULTS: A higher number of CMDs was associated with significantly steeper global cognitive decline in older (ß = -0.008; 95% confidence interval: -0.012, -0.005) but not middle age. Additionally, the presence of multiple CMDs was related to smaller total brain volume, gray matter volume, white matter volume, and hippocampal volume and larger white matter hyperintensity volume, even in middle age. DISCUSSION: CMDs are associated with cognitive decline in older age and poorer brain structural health beginning already in middle age. Highlights: We explored the association of CMDs with cognitive decline and brain MRI measures.CMDs accelerated cognitive decline in older (≥60y) but not middle (<60) age.CMDs were associated with poorer brain MRI parameters in both middle and older age.Results highlight the connection between CMDs and cognitive/brain aging.

3.
Front Immunol ; 15: 1337831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590520

RESUMO

Introduction: T cells, known for their ability to respond to an enormous variety of pathogens and other insults, are increasingly recognized as important mediators of pathology in neurodegeneration and other diseases. T cell gene expression phenotypes can be regulated by disease-associated genetic variants. Many complex diseases are better represented by polygenic risk than by individual variants. Methods: We first compute a polygenic risk score (PRS) for Alzheimer's disease (AD) using genomic sequencing data from a cohort of Alzheimer's disease (AD) patients and age-matched controls, and validate the AD PRS against clinical metrics in our cohort. We then calculate the PRS for several autoimmune disease, neurological disorder, and immune function traits, and correlate these PRSs with T cell gene expression data from our cohort. We compare PRS-associated genes across traits and four T cell subtypes. Results: Several genes and biological pathways associated with the PRS for these traits relate to key T cell functions. The PRS-associated gene signature generally correlates positively for traits within a particular category (autoimmune disease, neurological disease, immune function) with the exception of stroke. The trait-associated gene expression signature for autoimmune disease traits was polarized towards CD4+ T cell subtypes. Discussion: Our findings show that polygenic risk for complex disease and immune function traits can have varying effects on T cell gene expression trends. Several PRS-associated genes are potential candidates for therapeutic modulation in T cells, and could be tested in in vitro applications using cells from patients bearing high or low polygenic risk for AD or other conditions.


Assuntos
Doença de Alzheimer , Doenças Autoimunes , Humanos , Doença de Alzheimer/genética , Fenótipo , Risco , Transdução de Sinais/genética
4.
Transl Psychiatry ; 14(1): 178, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575567

RESUMO

Despite the significant burden, cost, and worse prognosis of Alzheimer's disease (AD) with behavioral and psychological symptoms of dementia (BPSD), little is known about the molecular causes of these symptoms. Using antemortem assessments of BPSD in AD, we demonstrate that individual BPSD can be grouped into 4 domain factors in our cohort: affective, apathy, agitation, and psychosis. Then, we performed a transcriptome-wide analysis for each domain utilizing bulk RNA-seq of post-mortem anterior cingulate cortex (ACC) tissues. Though all 4 domains are associated with a predominantly downregulated pattern of hundreds of differentially expressed genes (DEGs), most DEGs are unique to each domain, with only 22 DEGs being common to all BPSD domains, including TIMP1. Weighted gene co-expression network analysis (WGCNA) yielded multiple transcriptional modules that were shared between BPSD domains or unique to each domain, and NetDecoder was used to analyze context-dependent information flow through the biological network. For the agitation domain, we found that all DEGs and a highly associated transcriptional module were functionally enriched for ECM-related genes including TIMP1, TAGLN, and FLNA. Another unique transcriptional module also associated with the agitation domain was enriched with genes involved in post-synaptic signaling, including DRD1, PDE1B, CAMK4, and GABRA4. By comparing context-dependent changes in DEGs between cases and control networks, ESR1 and PARK2 were implicated as two high-impact genes associated with agitation that mediated significant information flow through the biological network. Overall, our work establishes unique targets for future study of the biological mechanisms of BPSD and resultant drug development.


Assuntos
Doença de Alzheimer , Apatia , Transtornos Psicóticos , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Sintomas Comportamentais
5.
Stem Cell Res Ther ; 15(1): 104, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600587

RESUMO

BACKGROUND: Microglia, the brain's resident immune cells, play vital roles in brain development, and disorders like Alzheimer's disease (AD). Human iPSC-derived microglia (iMG) provide a promising model to study these processes. However, existing iMG generation protocols face challenges, such as prolonged differentiation time, lack of detailed characterization, and limited gene function investigation via CRISPR-Cas9. METHODS: Our integrated toolkit for in-vitro microglia functional genomics optimizes iPSC differentiation into iMG through a streamlined two-step, 20-day process, producing iMG with a normal karyotype. We confirmed the iMG's authenticity and quality through single-cell RNA sequencing, chromatin accessibility profiles (ATAC-Seq), proteomics and functional tests. The toolkit also incorporates a drug-dependent CRISPR-ON/OFF system for temporally controlled gene expression. Further, we facilitate the use of multi-omic data by providing online searchable platform that compares new iMG profiles to human primary microglia: https://sherlab.shinyapps.io/IPSC-derived-Microglia/ . RESULTS: Our method generates iMG that closely align with human primary microglia in terms of transcriptomic, proteomic, and chromatin accessibility profiles. Functionally, these iMG exhibit Ca2 + transients, cytokine driven migration, immune responses to inflammatory signals, and active phagocytosis of CNS related substrates including synaptosomes, amyloid beta and myelin. Significantly, the toolkit facilitates repeated iMG harvesting, essential for large-scale experiments like CRISPR-Cas9 screens. The standalone ATAC-Seq profiles of our iMG closely resemble primary microglia, positioning them as ideal tools to study AD-associated single nucleotide variants (SNV) especially in the genome regulatory regions. CONCLUSIONS: Our advanced two-step protocol rapidly and efficiently produces authentic iMG. With features like the CRISPR-ON/OFF system and a comprehensive multi-omic data platform, our toolkit equips researchers for robust microglial functional genomic studies. By facilitating detailed SNV investigation and offering a sustainable cell harvest mechanism, the toolkit heralds significant progress in neurodegenerative disease drug research and therapeutic advancement.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Microglia/metabolismo , Proteômica , Peptídeos beta-Amiloides , Genômica , Doença de Alzheimer/genética , Cromatina/genética , Cromatina/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38582095

RESUMO

BACKGROUND: Many studies have reported that impaired gait precedes cognitive impairment in older people. We aimed to characterise the time course of cognitive and motor decline in older individuals and the association of these declines with the pathologies of Alzheimer's disease and related dementias. METHODS: This multicohort study used data from three community-based cohort studies (Religious Orders Study, Rush Memory and Aging Project, and Minority Aging Research Study, all in the USA). The inclusion criteria for all three cohorts were no clinical dementia at the time of enrolment and consent to annual clinical assessments. Eligible participants consented to post-mortem brain donation and had post-mortem pathological assessments and three or more repeated annual measures of cognition and motor functions. Clinical and post-mortem data were analysed using functional mixed-effects models. Global cognition was based on 19 neuropsychological tests, a hand strength score was based on grip and pinch strength, and a gait score was based on the number of steps and time to walk 8 feet and turn 360°. Brain pathologies of Alzheimer's disease and related dementias were assessed at autopsy. FINDINGS: From 1994 to 2022, there were 1570 eligible cohort participants aged 65 years or older, 1303 of whom had cognitive and motor measurements and were included in the analysis. Mean age at death was 90·3 years (SD 6·3), 905 (69%) participants were female, and 398 (31%) were male. Median follow-up time was 9 years (IQR 5-11). On average, cognition was stable from 25 to 15 years before death, when cognition began to decline. By contrast, gait function and hand strength declined during the entire study. The combinations of pathologies of Alzheimer's disease and related dementias associated with cognitive and motor decline and their onsets of associations varied; only tau tangles, Parkinson's disease pathology, and macroinfarcts were associated with decline of all three phenotypes. Tau tangles were significantly associated with cognitive decline, gait function decline, and hand function decline (p<0·0001 for each); however, the association with cognitive decline persisted for more than 11 years before death, but the association with hand strength only began 3·57 years before death and the association with gait began 3·49 years before death. By contrast, the association of macroinfarcts with declining gait function began 9·25 years before death (p<0·0001) compared with 6·65 years before death (p=0·0005) for cognitive decline and 2·66 years before death (p=0·024) for decline in hand strength. INTERPRETATION: Our findings suggest that average motor decline in older adults precedes cognitive decline. Macroinfarcts but not tau tangles are associated with declining gait function that precedes cognitive decline. This suggests the need for further studies to test if gait impairment is a clinical proxy for preclinical vascular cognitive impairment. FUNDING: National Institutes of Health.

7.
J Alzheimers Dis ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38607758

RESUMO

 Tau accumulation in and neurodegeneration of locus coeruleus (LC) neurons is observed in Alzheimer's disease (AD). We investigated whether tangle and neuronal density in the rostral and caudal LC is characterized by an asymmetric pattern in 77 autopsy cases of the Rush Memory and Aging Project. We found left-right equivalence for tangle density across individuals with and without AD pathology. However, neuronal density, particularly in the caudal-rostral axis of the LC, is asymmetric among individuals with AD pathology. Asymmetry in LC neuronal density may signal advanced disease progression and should be considered in AD neuroimaging studies of LC neurodegeneration.

8.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659743

RESUMO

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

9.
Sci Rep ; 14(1): 9038, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641631

RESUMO

The Mini-Mental State Examination (MMSE) is a widely employed screening tool for the severity of cognitive impairment. Among the MMSE items, the pentagon copying test (PCT) requires participants to accurately replicate a sample of two interlocking pentagons. While the PCT is traditionally scored on a binary scale, there have been limited developments of granular scoring scale to assess task performance. In this paper, we present a novel three-stage algorithm, called Quantification of Interlocking Pentagons (QIP) which quantifies PCT performance by computing the areas of individual pentagons and their intersection areas, and a balance ratio between the areas of the two individual pentagons. The three stages of the QIP algorithm include: (1) detection of line segments, (2) unraveling of the interlocking pentagons, and (3) quantification of areas. A set of 497 PCTs from 84 participants including their baseline and follow-up PCTs from the Rush Memory and Aging Project was selected blinded about their cognitive and clinical status. Analysis of the quantified data revealed a significant inverse relationship between age and balance ratio (beta = - 0.49, p = 0.0033), indicating that older age was associated with a smaller balance ratio. In addition, balance ratio was associated with perceptual speed (r = 0.71, p = 0.0135), vascular risk factors (beta = - 3.96, p = 0.0269), and medical conditions (beta = - 2.78, p = 0.0389). The QIP algorithm can serve as a useful tool for enhancing the scoring of performance in the PCT.


Assuntos
Disfunção Cognitiva , Humanos , Testes Neuropsicológicos , Testes de Estado Mental e Demência , Disfunção Cognitiva/diagnóstico
10.
Artigo em Inglês | MEDLINE | ID: mdl-38597160

RESUMO

High engagement in lifestyle health behaviors appears to be protective against cognitive decline in aging. We investigated the association between patterns of modifiable lifestyle health behaviors and common brain neuropathologies of dementia as a possible mechanism. We examined 555 decedents from the Rush Memory and Aging Project, free of dementia at their initial concurrent report of lifestyle health behaviors of interest (physical, social, and cognitive activities, and healthy diet) and who underwent a postmortem neuropathology evaluation. First, we used latent profile analysis to group participants based on baseline behavior patterns. Second, we assessed the associations of profile membership with each neurodegenerative (global Alzheimer's Disease (AD) pathology, amyloid-beta load, density of neurofibrillary tangles, and presence of cortical Lewy bodies and TAR DNA-binding protein 43 [TDP-43] cytoplasmic inclusions) and neurovascular pathologies (presence of chronic gross or microscopic infarcts, arteriolosclerosis, atherosclerosis, and cerebral amyloid angiopathy), using separate linear or logistic regression models, adjusted for age at death, and sex (core model) vascular disease risk factors, and vascular conditions (fully-adjusted model). Participants had either consistently lower (N=224) or consistently higher (N=331) engagement across four lifestyle health behaviors. We generally found no differences in neuropathologies between higher and lower engagement groups in core or fully-adjusted models; for example, higher engagement in lifestyle health behaviors was not associated with global AD pathology after core or full adjustment (both P>0.8). In conclusion, we found no evidence of associations between patterns of lifestyle health behaviors and neuropathology. Other mechanisms may underlie protective effects of health behaviors against dementia.

11.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464180

RESUMO

Characteristic cerebral pathological changes of Alzheimer's disease (AD) such as glucose hypometabolism or the accumulation of cleavage products of the amyloid precursor protein (APP), known as Aß peptides, lead to sustained endoplasmic reticulum (ER) stress and neurodegeneration. To preserve ER homeostasis, cells activate their unfolded protein response (UPR). The rhomboid-like-protease 4 (RHBDL4) is an enzyme that participates in the UPR by targeting proteins for proteasomal degradation. We demonstrated previously that RHBLD4 cleaves APP in HEK293T cells, leading to decreased total APP and Aß. More recently, we showed that RHBDL4 processes APP in mouse primary mixed cortical cultures as well. Here, we aim to examine the physiological relevance of RHBDL4 in the brain. We first found that brain samples from AD patients and an AD mouse model (APPtg) showed increased RHBDL4 mRNA and protein expression. To determine the effects of RHBDL4's absence on APP physiology in vivo, we crossed APPtg mice to a RHBDL4 knockout (R4 KO) model. RHBDL4 deficiency in APPtg mice led to increased total cerebral APP and Aß levels when compared to APPtg controls. Contrary to expectations, as assessed by cognitive tests, RHBDL4 absence rescued cognition in 5-month-old female APPtg mice. Informed by unbiased RNAseq data, we demonstrated in vitro and in vivo that RHBDL4 absence leads to greater levels of active ß-catenin due to decreased proteasomal clearance. Decreased ß-catenin activity is known to underlie cognitive defects in APPtg mice and AD. Our work suggests that RHBDL4's increased expression in AD, in addition to regulating APP levels, leads to aberrant degradation of ß-catenin, contributing to cognitive impairment.

12.
Neurology ; 102(7): e209223, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38502899

RESUMO

BACKGROUND AND OBJECTIVES: Molecular omics studies have identified proteins related to cognitive resilience but unrelated to Alzheimer disease and Alzheimer disease-related dementia (AD/ADRD) pathologies. Posttranslational modifications of proteins with glycans can modify protein function. In this study, we identified glycopeptiforms associated with cognitive resilience. METHODS: We studied brains from adults with annual cognitive testing with postmortem indices of 10 AD/ADRD pathologies and proteome-wide data from dorsal lateral prefrontal cortex (DLPFC). We quantified 11, 012 glycopeptiforms from DLPFC using liquid chromatography with tandem mass spectrometry. We used linear mixed-effects models to identify glycopeptiforms associated with cognitive decline correcting for multiple comparisons (p < 5 × 10-6). Then, we regressed out the effect of AD/ADRD pathologies to identify glycopeptiforms that may provide cognitive resilience. RESULTS: We studied 366 brains, average age at death 89 years, and 70% female with no cognitive impairment = 152, mild cognitive impairment = 93, and AD = 121 cognitive status at death. In models adjusting for age, sex and education, 11 glycopeptiforms were associated with cognitive decline. In further modeling, 8 of these glycopeptiforms remained associated with cognitive decline after adjusting for AD/ADRD pathologies: NPTX2a (Est., 0.030, SE, 0.005, p = 1 × 10-4); NPTX2b (Est.,0.019, SE, 0.005, p = 2 × 10-4) NECTIN1(Est., 0.029, SE, 0.009, p = 9 × 10-4), NPTX2c (Est., 0.015, SE, 0.004, p = 9 × 10-4), HSPB1 (Est., -0.021, SE, 0.006, p = 2 × 10-4), PLTP (Est., -0.027, SE, 0.009, p = 4.2 × 10-3), NAGK (Est., -0.027, SE, 0.008, p = 1.4 × 10-3), and VAT1 (Est., -0.020, SE, 0.006, p = 1.1 × 10-3). Higher levels of 4 resilience glycopeptiforms derived through glycosylation were associated with slower decline and higher levels of 4 derived through glycation were related to faster decline. Together, these 8 glycopeptiforms accounted for an additional 6% of cognitive decline over the 33% accounted for the 10 brain pathologies and demographics. All 8 resilience glycopeptiforms remained associated with cognitive decline after adjustments for the expression level of their corresponding protein. Exploratory gene ontology suggested that molecular mechanisms of glycopeptiforms associated with cognitive decline may involve metabolic pathways including pyruvate and NADH pathways and highlighted the importance of molecular mechanisms involved in glucose metabolism. DISCUSSION: Glycopeptiforms in aging brains may provide cognitive resilience. Targeting these glycopeptiforms may lead to therapies that maintain cognition through resilience.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Resiliência Psicológica , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/patologia , Proteoma/metabolismo , Disfunção Cognitiva/metabolismo , Encéfalo/patologia , Cognição , Glicoproteínas/metabolismo
13.
J Physiol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554126

RESUMO

Motoneuron properties and their firing patterns undergo significant changes throughout development and in response to neuromodulators such as serotonin. Here, we examined the age-related development of self-sustained firing and general excitability of tibialis anterior motoneurons in a young development (7-17 years), young adult (18-28 years) and adult (32-53 years) group, as well as in a separate group of participants taking selective serotonin reuptake inhibitors (SSRIs, aged 11-28 years). Self-sustained firing, as measured by ΔF, was larger in the young development (∼5.8 Hz, n = 20) compared to the young adult (∼4.9 Hz, n = 13) and adult (∼4.8 Hz, n = 8) groups, consistent with a developmental decrease in self-sustained firing mediated by persistent inward currents (PIC). ΔF was also larger in participants taking SSRIs (∼6.5 Hz, n = 9) compared to their age-matched controls (∼5.3 Hz, n = 26), consistent with increased levels of spinal serotonin facilitating the motoneuron PIC. Participants in the young development and SSRI groups also had higher firing rates and a steeper acceleration in initial firing rates (secondary ranges), consistent with the PIC producing a steeper acceleration in membrane depolarization at the onset of motoneuron firing. In summary, both the young development and SSRI groups exhibited increased intrinsic motoneuron excitability compared to the adults, which, in the young development group, was also associated with a larger unsteadiness in the dorsiflexion torque profiles. We propose several intrinsic and extrinsic factors that affect both motoneuron PICs and cell discharge which vary during development, with a time course similar to the changes in motoneuron firing behaviour observed in the present study. KEY POINTS: Neurons in the spinal cord that activate muscles in the limbs (motoneurons) undergo increases in excitability shortly after birth to help animals stand and walk. We examined whether the excitability of human ankle flexor motoneurons also continues to change from child to adulthood by recording the activity of the muscle fibres they innervate. Motoneurons in children and adolescents aged 7-17 years (young development group) had higher signatures of excitability that included faster firing rates and more self-sustained activity compared to adults aged ≥18 years. Participants aged 11-28 years of age taking serotonin reuptake inhibitors had the highest measures of motoneuron excitability compared to their age-matched controls. The young development group also had more unstable contractions, which might partly be related to the high excitability of the motoneurons.

14.
J Cereb Blood Flow Metab ; : 271678X241237484, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441044

RESUMO

The brain is a highly demanding organ, utilizing mainly glucose but also ketone bodies as sources of energy. Glucose transporter-1 (GLUT1) and monocarboxylates transporter-1 (MCT1) respectively transport glucose and ketone bodies across the blood-brain barrier. While reduced glucose uptake by the brain is one of the earliest signs of Alzheimer's disease (AD), no change in the uptake of ketone bodies has been evidenced yet. To probe for changes in GLUT1 and MCT1, we performed Western immunoblotting in microvessel extracts from the parietal cortex of 60 participants of the Religious Orders Study. Participants clinically diagnosed with AD had lower cerebrovascular levels of GLUT1, whereas MCT1 remained unchanged. GLUT1 reduction was associated with lower cognitive scores. No such association was found for MCT1. GLUT1 was inversely correlated with neuritic plaques and cerebrovascular ß-secretase-derived fragment levels. No other significant associations were found between both transporters, markers of Aß and tau pathologies, sex, age at death or apolipoprotein-ε4 genotype. These results suggest that, while a deficit of GLUT1 may underlie the reduced transport of glucose to the brain in AD, no such impairment occurs for MCT1. This study thus supports the exploration of ketone bodies as an alternative energy source for the aging brain.

15.
Alzheimers Dement ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494787

RESUMO

INTRODUCTION: This study investigates the relationship between microglia inflammation in the hippocampus, brain pathologies, and cognitive decline. METHODS: Participants underwent annual clinical evaluations and agreed to brain donation. Neuropathologic evaluations quantified microglial burden in the hippocampus, amyloid beta (Aß), tau tangles, and limbic age-related transactive response DNA-binding protein 43 (TDP-43) encephalopathy neuropathologic changes (LATE-NC), and other common brain pathologies. Mixed-effect and linear regression models examined the association of microglia with a decline in global and domain-specific cognitive measures, and separately with brain pathologies. Path analyses estimated direct and indirect effects of microglia on global cognition. RESULT: Hippocampal microglia were associated with a faster decline in global cognition, specifically in episodic memory, semantic memory, and perceptual speed. Tau tangles and LATE-NC were independently associated with microglia. Other pathologies, including Aß, were not related. Regional hippocampal burden of tau tangles and TDP-43 accounted for half of the association of microglia with cognitive decline. DISCUSSION: Microglia inflammation in the hippocampus contributes to cognitive decline. Tau tangles and LATE-NC partially mediate this association.

16.
Alzheimers Dement ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497429

RESUMO

INTRODUCTION: Degradation of fractal patterns in actigraphy independently predicts dementia risk. Such observations motivated the study to understand the role of fractal regulation in the context of neuropathologies. METHODS: We examined associations of fractal regulation with neuropathologies and longitudinal cognitive changes in 533 older participants who were followed annually with actigraphy and cognitive assessments until death with brain autopsy performed. Two measures for fractal patterns were extracted from actigraphy, namely, α1 (representing the fractal regulation at time scales of <90 min) and α2 (for time scales 2 to 10 h). RESULTS: We found that larger α1 was associated with lower burdens of Lewy body disease or cerebrovascular disease pathologies; both α1 and α2 were associated with cognitive decline. They explained an additional significant portion of the variance in the rate of cognitive decline above and beyond neuropathologies. DISCUSSION: Fractal patterns may be used as a biomarker for cognitive resilience against dementia-related neuropathologies.

17.
Nat Genet ; 56(4): 605-614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514782

RESUMO

The relationship between genetic variation and gene expression in brain cell types and subtypes remains understudied. Here, we generated single-nucleus RNA sequencing data from the neocortex of 424 individuals of advanced age; we assessed the effect of genetic variants on RNA expression in cis (cis-expression quantitative trait loci) for seven cell types and 64 cell subtypes using 1.5 million transcriptomes. This effort identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell subtype level. Many eGenes are only detected within cell subtypes. A new variant influences APOE expression only in microglia and is associated with greater cerebral amyloid angiopathy but not Alzheimer's disease pathology, after adjusting for APOEε4, providing mechanistic insights into both pathologies. Furthermore, only a TMEM106B variant affects the proportion of cell subtypes. Integration of these results with genome-wide association studies highlighted the targeted cell type and probable causal gene within Alzheimer's disease, schizophrenia, educational attainment and Parkinson's disease loci.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla/métodos , Encéfalo/metabolismo , Locos de Características Quantitativas/genética , Variação Genética/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
18.
Sci Rep ; 14(1): 7269, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538816

RESUMO

Typical differential single-nucleus gene expression (snRNA-seq) analyses in Alzheimer's disease (AD) provide fixed snapshots of cellular alterations, making the accurate detection of temporal cell changes challenging. To characterize the dynamic cellular and transcriptomic differences in AD neuropathology, we apply the novel concept of RNA velocity to the study of single-nucleus RNA from the cortex of 60 subjects with varied levels of AD pathology. RNA velocity captures the rate of change of gene expression by comparing intronic and exonic sequence counts. We performed differential analyses to find the significant genes driving both cell type-specific RNA velocity and expression differences in AD, extensively compared these two transcriptomic metrics, and clarified their associations with multiple neuropathologic traits. The results were cross-validated in an independent dataset. Comparison of AD pathology-associated RNA velocity with parallel gene expression differences reveals sets of genes and molecular pathways that underlie the dynamic and static regimes of cell type-specific dysregulations underlying the disease. Differential RNA velocity and its linked progressive neuropathology point to significant dysregulations in synaptic organization and cell development across cell types. Notably, most of the genes underlying this synaptic dysregulation showed increased RNA velocity in AD subjects compared to controls. Accelerated cell changes were also observed in the AD subjects, suggesting that the precocious depletion of precursor cell pools might be associated with neurodegeneration. Overall, this study uncovers active molecular drivers of the spatiotemporal alterations in AD and offers novel insights towards gene- and cell-centric therapeutic strategies accounting for dynamic cell perturbations and synaptic disruptions.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , RNA/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Núcleo Solitário/metabolismo
19.
J Alzheimers Dis ; 98(1): 95-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427476

RESUMO

Background: Alzheimer's disease neuropathologic changes (AD-NC) are important to identify people with high risk for AD dementia (ADD) and subtyping ADD. Objective: Develop imputation models based on clinical measures to infer AD-NC. Methods: We used penalized generalized linear regression to train imputation models for four AD-NC traits (amyloid-ß, tangles, global AD pathology, and pathologic AD) in Rush Memory and Aging Project decedents, using clinical measures at the last visit prior to death as predictors. We validated these models by inferring AD-NC traits with clinical measures at the last visit prior to death for independent Religious Orders Study (ROS) decedents. We inferred baseline AD-NC traits for all ROS participants at study entry, and then tested if inferred AD-NC traits at study entry predicted incident ADD and postmortem pathologic AD. Results: Inferred AD-NC traits at the last visit prior to death were related to postmortem measures with R2 = (0.188,0.316,0.262) respectively for amyloid-ß, tangles, and global AD pathology, and prediction Area Under the receiver operating characteristic Curve (AUC) 0.765 for pathologic AD. Inferred baseline levels of all four AD-NC traits predicted ADD. The strongest prediction was obtained by the inferred baseline probabilities of pathologic AD with AUC = (0.919,0.896) for predicting the development of ADD in 3 and 5 years from baseline. The inferred baseline levels of all four AD-NC traits significantly discriminated pathologic AD profiled eight years later with p-values < 1.4×10-10. Conclusions: Inferred AD-NC traits based on clinical measures may provide effective AD biomarkers that can estimate the burden of AD-NC traits in aging adults.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Espécies Reativas de Oxigênio , Peptídeos beta-Amiloides , Envelhecimento/patologia , Fenótipo
20.
Alzheimers Dement ; 20(4): 2906-2921, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460116

RESUMO

INTRODUCTION: Although dementia-related proteinopathy has a strong negative impact on public health, and is highly heritable, understanding of the related genetic architecture is incomplete. METHODS: We applied multidimensional generalized partial credit modeling (GPCM) to test genetic associations with dementia-related proteinopathies. Data were analyzed to identify candidate single nucleotide variants for the following proteinopathies: Aß, tau, α-synuclein, and TDP-43. RESULTS: Final included data comprised 966 participants with neuropathologic and WGS data. Three continuous latent outcomes were constructed, corresponding to TDP-43-, Aß/Tau-, and α-synuclein-related neuropathology endophenotype scores. This approach helped validate known genotype/phenotype associations: for example, TMEM106B and GRN were risk alleles for TDP-43 pathology; and GBA for α-synuclein/Lewy bodies. Novel suggestive proteinopathy-linked alleles were also discovered, including several (SDHAF1, TMEM68, and ARHGEF28) with colocalization analyses and/or high degrees of biologic credibility. DISCUSSION: A novel methodology using GPCM enabled insights into gene candidates for driving misfolded proteinopathies. HIGHLIGHTS: Latent factor scores for proteinopathies were estimated using a generalized partial credit model. The three latent continuous scores corresponded well with proteinopathy severity. Novel genes associated with proteinopathies were identified. Several genes had high degrees of biologic credibility for dementia risk factors.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Demência , Deficiências na Proteostase , Proteinopatias TDP-43 , Humanos , alfa-Sinucleína/genética , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/patologia , Demência/genética , Proteínas de Ligação a DNA , Doença de Alzheimer/patologia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...